

... for a brighter future

1st Workshop on Photo-cathodes: 300-500nm

July 20-21, 2009: University of Chicago

Klaus Attenkofer, Karen Byrum, Henry Frisch, Oswald Siegmund

A U.S. Department of Energy laboratory managed by The University of Chicago

Motivation for the workshop: How to build a Single-Photon-Detector better than a PMT?

- **Existing project for large area detector** with single photon capability, time resolution of up to 1ps and 300μm spatial resolution.
- The new detector should be <u>cost efficient and "easy" to build</u> (in comparison to PMT based systems)
- What can we learn from the various communities to make a "perfect" photo-cathode.

The Three Criteria:

Long lifetime of the device & easy to assembly

High efficiency & bandwidth optimization

"Good" noise behavior

What is the best structure for a good and cost-efficient Photocathode?

What is Our Goals?

- 1. Discuss and agree on the basic underlying physics processes (Finding a common Language)
- 2. Bring up and explore new directions, materials, techniques, and geometries
- 3. Elucidate the trade –offs between conventional choices: transparent/reflective, bialkali/III-V, etc.
- 4. Clarify the requirements for large-area photo-cathodes (Vacuum, fabrication, lifetime, mechanical & chemical)
- 5. Identify the most promising conventional materials for high-QE, low-noise cathodes in the 300-500nm range
- 6. Identify additional resources, facilities, and (possibly) collaborative efforts
- Contribute to narrowing the possibilities for this year's work on photocathodes to a few most promising paths

Thank you for coming and enjoy the workshop

High Efficiency and Bandwidth Optimization:

- What are the best ways to reduce reflection losses, what are the problems
 - Pattering of substrate / nano-structures
 - Reflection versus transmission geometries
 - Refractive index matching
 - _ ??????
- Thickness optimization of the active layer
 - State-of-the-art simulation of electron and photon
 - Optimization of doping profile and how to make it
 - External versus internal electric fields
- The negative electron affinity (NEA) layer
 - The chemistry and crystal structure of the layer
 - Long term stability
 - Ion etching and how to protect the cathode
- Are there new (nano-)technologies which can help

Lifetime of the Device and How to Assembly

- Chemical and mechanical damage of the cathode
 - The process and is there a way of quantitative understanding
 - Effects of various gasses
- Protective layers
 - Membranes: influence on time structure, efficiency, and noise.
 - Cathodes with alternative geometries (like reflection geometry)
- Assembly issues
 - What are the vacuum requirements in the final detector (partial pressures?)
 - Which fabrication steps can be done in foundries and what has to be done in a precise vacuum/gas atmosphere
 - Final assembly in vacuum or ultra-pure gas atmosphere
 - How does the production line look like

What Determines the Noise Behavior

- Dopants and defects
 - Is there a basic understanding on the effects of different dopants (electron scattering, thermal excitation, E-field-strength effects)
 - Correlation between free carriers and macroscopic quantities like refractive index, DC/RC dielectric constant.
- Field emission
 - Limitations of the external field for nano structured surfaces
 - Effects of dopants on local field distributions
- Spectral response
 - How precise can the bandwidth be matched to the source
- Thermal effects in detectors
 - Influence of high count rate
 -

